
1.1 Background
The angular speed of the SRV02 load shaft with respect to the input motor voltage can be described by the following
first-order transfer function

Ωl(s)

Vm(s)
=

K

(τs+ 1)
(1.1.1)

where Ωl(s) is the Laplace transform of the load shaft speed ωl(t), Vm(s) is the Laplace transform of motor input
voltage vm(t), K is the steady-state gain, τ is the time constant, and s is the Laplace operator.

The SRV02 transfer function model is derived analytically in Section 1.1.1 and itsK and τ parameters are evaluated.
These are known as the nominal model parameter values. The model parameters can also be found experimentally.
Sections 1.1.2.1 and 1.1.2.2 describe how to use the frequency response and bump-test methods to find K and τ .
These methods are useful when the dynamics of a system are not known, for example in a more complex system.
After the lab experiments, the experimental model parameters are compared with the nominal values.

1.1.1 Modeling Using First-Principles

1.1.1.1 Electrical Equations

The DC motor armature circuit schematic and gear train is illustrated in Figure 1.1. As specified in [6], recall that Rm

is the motor resistance, Lm is the inductance, and km is the back-emf constant.

Figure 1.1: SRV02 DC motor armature circuit and gear train

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor shaft, ωm, and the back-emf constant
of the motor, km. It opposes the current flow. The back emf voltage is given by:

eb(t) = kmωm(t) (1.1.2)

Using Kirchoff's Voltage Law, we can write the following equation:

Vm(t)−RmIm(t)− Lm
dIm(t)

dt
− kmωm(t) = 0 (1.1.3)

Since the motor inductance Lm is much less than its resistance, it can be ignored. Then, the equation becomes

Vm(t)−RmIm(t)− kmωm(t) = 0 (1.1.4)
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Solving for Im(t), the motor current can be found as:

Im(t) =
Vm(t)− kmωm(t)

Rm
(1.1.5)

1.1.1.2 Mechanical Equations

In this section the equation of motion describing the speed of the load shaft, ωl, with respect to the applied motor
torque, τm, is developed.

Since the SRV02 is a one degree-of-freedom rotary system, Newton's Second Law of Motion can be written as:

J · α = τ (1.1.6)

where J is the moment of inertia of the body (about its center of mass), α is the angular acceleration of the system,
and τ is the sum of the torques being applied to the body. As illustrated in Figure 1.1, the SRV02 gear train along
with the viscous friction acting on the motor shaft, Bm, and the load shaft Bl are considered. The load equation of
motion is

Jl
dωl(t)

dt
+Blωl(t) = τl(t) (1.1.7)

where Jl is the moment of inertia of the load and τl is the total torque applied on the load. The load inertia includes
the inertia from the gear train and from any external loads attached, e.g. disc or bar. The motor shaft equation is
expressed as:

Jm
dωm(t)

dt
+Bmωm(t) + τml(t) = τm(t) (1.1.8)

where Jm is the motor shaft moment of inertia and τml is the resulting torque acting on the motor shaft from the load
torque. The torque at the load shaft from an applied motor torque can be written as:

τl(t) = ηgKgτml(t) (1.1.9)

where Kg is the gear ratio and ηg is the gearbox efficiency. The planetary gearbox that is directly mounted on the
SRV02 motor (see [6] for more details) is represented by the N1 and N2 gears in Figure 1.1 and has a gear ratio of

Kgi =
N2

N1
(1.1.10)

This is the internal gear box ratio. The motor gear N3 and the load gear N4 are directly meshed together and are
visible from the outside. These gears comprise the external gear box which has an associated gear ratio of

Kge =
N4

N3
(1.1.11)

The gear ratio of the SRV02 gear train is then given by:

Kg = KgeKgi (1.1.12)

Thus, the torque seen at the motor shaft through the gears can be expressed as:

τml(t) =
τl(t)

ηgKg
(1.1.13)

Intuitively, the motor shaft must rotate Kg times for the output shaft to rotate one revolution.

θm(t) = Kgθl(t) (1.1.14)
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We can find the relationship between the angular speed of the motor shaft, ωm, and the angular speed of the load
shaft, ωl by taking the time derivative:

ωm(t) = Kgωl(t) (1.1.15)

To find the differential equation that describes the motion of the load shaft with respect to an applied motor torque
substitute (1.1.13), (1.1.15) and (1.1.7) into (1.1.8) to get the following:

JmKg
dωl(t)

dt
+BmKgωl(t) +

Jl(
dωl(t)

dt ) +Blωl(t)

ηgKg
= τm(t) (1.1.16)

Collecting the coefficients in terms of the load shaft velocity and acceleration gives

(ηgK
2
gJm + Jl)

dωl(t)

dt
+ (ηgK

2
gBm +Bl)ωl(t) = ηgKgτm(t) (1.1.17)

Defining the following terms:
Jeq = ηgK

2
gJm + Jl (1.1.18)

Beq = ηgK
2
gBm +Bl (1.1.19)

simplifies the equation as:

Jeq
dωl(t)

dt
+Beqωl(t) = ηgKgτm(t) (1.1.20)

1.1.1.3 Combining the Electrical and Mechanical Equations

In this section the electrical equation derived in Section 1.1.1.1 and the mechanical equation found in Section 1.1.1.2
are brought together to get an expression that represents the load shaft speed in terms of the applied motor voltage.

The motor torque is proportional to the voltage applied and is described as

τm(t) = ηmktIm(t) (1.1.21)

where kt is the current-torque constant (N.m/A), ηm is the motor efficiency, and Im is the armature current. See [6]
for more details on the SRV02 motor specifications.

We can express the motor torque with respect to the input voltage Vm(t) and load shaft speed ωl(t) by substituting
the motor armature current given by equation 1.1.5 in Section 1.1.1.1, into the current-torque relationship given in
equation 1.1.21:

τm(t) =
ηmkt (Vm(t)− kmωm(t))

Rm
(1.1.22)

To express this in terms of Vm and ωl, insert the motor-load shaft speed equation 1.1.15, into 1.1.21 to get:

τm(t) =
ηmkt (Vm(t)− kmKgωl(t))

Rm
(1.1.23)

If we substitute (1.1.23) into (1.1.20), we get:

Jeq

(
d

dt
wl(t)

)
+Beqwl(t) =

ηgKgηmkt (Vm(t)− kmKgωl(t))

Rm
(1.1.24)

After collecting the terms, the equation becomes(
d

dt
wl(t)

)
Jeq +

(
kmηgK

2
gηmkt

Rm
+Beq

)
ωl(t) =

ηgKgηmktVm(t)

Rm
(1.1.25)
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This equation can be re-written as: (
d

dt
wl(t)

)
Jeq +Beq,vωl(t) = Am Vm(t) (1.1.26)

where the equivalent damping term is given by:

Beq,v =
ηgK

2
gηmktkm +BeqRm

Rm
(1.1.27)

and the actuator gain equals

Am =
ηgKgηmkt

Rm
(1.1.28)

1.1.2 Modeling Using Experiments

In Section 1.1.1 you learned how the system model can be derived from the first-principles. A linear model of a
system can also be determined purely experimentally. The main idea is to experimentally observe how a system
reacts to different inputs and change structure and parameters of a model until a reasonable fit is obtained. The
inputs can be chosen in many different ways and there are a large variety of methods. In Sections 1.1.2.1 and
1.1.2.2, two methods of modeling the SRV02 are outlined: (1) frequency response and, (2) bump test.

1.1.2.1 Frequency Response

In Figure 1.2, the response of a typical first-order time-invariant system to a sine wave input is shown. As it can be
seen from the figure, the input signal (u) is a sine wave with a fixed amplitude and frequency. The resulting output
(y) is also a sinusoid with the same frequency but with a different amplitude. By varying the frequency of the input
sine wave and observing the resulting outputs, a Bode plot of the system can be obtained as shown in Figure 1.3.

Figure 1.2: Typical frequency response

The Bode plot can then be used to find the steady-state gain, i.e. the DC gain, and the time constant of the system.
The cuttoff frequency, ωc, shown in Figure 1.3 is defined as the frequency where the gain is 3 dB less than the
maximum gain (i.e. the DC gain). When working in the linear non-decibel range, the 3 dB frequency is defined as
the frequency where the gain is 1√

2
, or about 0.707, of the maximum gain. The cutoff frequency is also known as

the bandwidth of the system which represents how fast the system responds to a given input.
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