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An Analysis of Nonparametric Off-Policy Policy
Gradient Estimation

Samuele Tosatto, João Carvalho, and Jan Peters

Abstract—Off-policy Reinforcement Learning (RL) holds the promise of better data efficiency as it allows sample reuse and potentially
enables safe interaction with the environment. Current off-policy policy gradient methods either suffer from high bias or high variance,
delivering often unreliable estimates. The price of inefficiency becomes evident in real world scenarios such as interaction-driven robot
learning, where the success of RL has been rather limited, and a very high sample cost hinders straightforward application. In this
paper we propose a nonparametric Bellman equation, which can be solved in closed form. The solution is differentiable w.r.t the policy
parameters and gives access to an estimation of the policy gradient. In this way, we avoid the high variance of importance sampling
approaches, and the high bias of semi-gradient methods. We empirically analyze the quality of our gradient estimate against
state-of-the-art methods, and we show that it outperforms the baselines in terms of sample efficiency on classical control tasks.

Index Terms—Reinforcement Leanring, Policy Gradient, Nonparametric Estimation.
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1 INTRODUCTION

R EINFORCEMENT LEARNING has made overwhelming
progress in recent years, especially when applied to

board and computer games, or simulated tasks [1]–[3].
However, in comparison, only a little improvement has
been achieved on real-world tasks. One of the reasons of
this gap is that the vast majority of reinforcement learning
approaches are on-policy. On-policy algorithms require that
the samples are collected using the optimization policy; and
therefore this implies that a) there is little control on the
environment and b) samples must be discarded after each
policy improvement, causing high sample inefficiency. In
contrast, off-policy techniques are theoretically more sample
efficient, because they decouple the procedures of data
acquisition and policy update, allowing for the possibility of
sample-reuse, and enable a higher degree of control on the
data-acquisition process, which allows for safe interaction.
These two properties are of crucial importance for real-
world scenarios. However, classical off-policy algorithms
like Q-learning with function approximation and fitted Q-
iteration [4], [5] are not guaranteed to converge [6], [7],
and allow only discrete actions. More recent semi-gradient1

off-policy techniques, like Off-PAC [9] and DDPG [10], [11]
often perform sub-optimally, especially when the collected
data is strongly off-policy, due to the biased semi-gradient
update [12]. Off-policy algorithms based on importance
sampling [13]–[15] deliver an unbiased estimate of the gra-
dient but suffer from high variance and are generally only
applicable with stochastic policies. Moreover, they require
the full knowledge of the behavioral policy, making them
unsuitable when data stems from a human demonstrator.
Additionally, model-based approaches like PILCO [16] may
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Fig. 1: In the off-policy reinforcement learning scheme, the
policy can be optimized using an off-policy dataset. This
allows for safer interaction with the system and for better
sample efficiency.

be considered to be off-policy. Such probabilistic nonlinear
trajectory optimizers are limited to the finite-horizon do-
main and suffer from coarse approximations when prop-
agating the state distribution through time. To address all
previously highlighted issues in state-of-the-art off-policy
approaches, we propose a new algorithm, the nonparamet-
ric off-policy policy gradient (NOPG) [17], a full-gradient
estimate based on the closed-form solution of a nonpara-
metric Bellman equation. We avoid the high variance of
importance sampling techniques and allow for the use of
human demonstrations, and unlike other nonparametric
methods like PILCO, our approach allows for multimodal
state-transitions, and can handle the infinite-horizon setting.
Figure 1 shows the optimization cycle of NOPG. A behav-
ioral policy, represented by a human demonstrator, provides
(possibly suboptimal) trajectories that solve a task. NOPG
optimizes a policy from off-line and off-policy samples.
The two other approaches, semi-gradient and path-wise
importance sampling, do not work in this scenario.
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In this paper we present both the theoretical foundations
of our approach, and an empirical analysis to compare the
quality of our gradient estimate and the sample efficiency
w.r.t. state-of-the art techniques.

2 PROBLEM STATEMENT

Consider the reinforcement learning problem of an agent
interacting with a given environment, as abstracted by a
Markov decision process (MDP) and defined over the tu-
ple (S,A, γ, P,R, µ0) where S ≡ Rds is the state space,
A ≡ Rda the action space, the transition-based discount
factor γ is a stochastic mapping between S ×A×S to [0, 1),
which allows for unification of episodic and continuing
tasks [18], offering, among others, a natural representation
of task termination (where γ = 0). The transition probability
from a state s to s′ given an action a is governed by the
conditional density p(s′|s,a). The stochastic reward signal
R for a transition (s,a, s′) ∈ S×A×S is drawn from a distri-
bution R(s,a, s′) with mean value Es′ [R(s,a, s′)] = r(s,a).
The initial distribution µ0(s) denotes the probability of the
state s ∈ S to be a starting state. A policy π is a stochastic or
deterministic mapping from S ontoA, usually parametrized
by a set of parameters θ.

We define an episode as τ ≡ {st,at, rt, γt}∞t=1 where

s0 ∼ µ0(·); at ∼ π(· | st); st+1 ∼ p(· | st,at)
rt ∼ R(st,at, st+1), γt ∼ γ(st,at, st+1).

In this paper we consider the discounted infinite-horizon
setting, where the objective is to maximize the expected
return

Jπ = E
τ

[ ∞∑

t=0

rt

t∏

i=0

γi

]
. (1)

It is propaedeutic to introduce two important quantities: the
stationary state visitation µπ and the value function Vπ . We
naturally extend the stationary state visitation defined by
[19] with the transition-based discount factor

µ(s) = E
τ

[ ∞∑

t=0

p(s = st|π, µ0)
t∏

i=1

γi

]
,

or, equivalently, as the fixed point of

µ(s) = µ0(s) +

∫

S

∫

A
pγ(s|s′,a′)π(a′|s′)µπ(s′) ds′ da′

where, from now on, pγ(s′|s,a)=p(s′|s,a)E[γ(s,a, s′)]. The
value function

Vπ(s) = E
τ

[ ∞∑

t=0

rtp(rt|s0 = s, π)
t∏

i=0

γi

]
,

corresponds to the fixed point of the Bellman equation,

Vπ(s) =

∫

A
π(a|s)

(
r(s,a) +

∫

S
Vπ(s′)pγ(s′|s,a) ds′

)
da.

The state-action value function is defined as

Qπ(s,a) = r(s,a) +

∫

S
Vπ(s′)pγ(s′|s,a) ds′.

The expected return (1) can be formulated as

Jπ =

∫

S
µ0(s)Vπ(s) ds =

∫

S

∫

A
µπ(s)π(a|s)r(s,a) da ds.

Policy Gradient Theorem. Objective (1) is usually max-
imized via gradient ascent. The gradient of Jπ w.r.t. the
policy parameters θ is

∇θJπ=

∫

S

∫

A

µπ(s)πθ(a|s)Qπ(s,a)∇θ log πθ(a|s) da ds,

as stated in the policy gradient theorem [19]. When it is
possible to interact with the environment with the policy πθ ,
one can approximate the integral by considering the state-
action as a distribution (up to a normalization factor) and
use the samples to perform a Monte-Carlo (MC) estimation
[20]. The Q-function can be estimated via Monte-Carlo
sampling, approximate dynamic programming or by direct
Bellman minimization. In the off-policy setting, we do not
have access to the state-visitation µπ induced by the policy,
but instead we observe a different state distribution. While
estimating the Q-function with the new state distribution
is well established in the literature [4], [21], the shift in the
state visitation µπ(s) is more difficult to obtain. State-of-the-
art techniques either omit to consider this shift (we refer to
these algorithms as semi-gradient ), or they try to estimate it
via importance sampling correction. These approaches will
be discussed in detail in Section 4.

3 NONPARAMETRIC OFF-POLICY POLICY GRADI-
ENT

In this section we introduce a nonparametric Bellman equa-
tion with a closed form solution, which carries the depen-
dency from the policy’s parameters. We derive the gradient
of the solution, and discuss the properties of the proposed
estimator.

3.1 A Nonparametric Bellman Equation

Nonparametric Bellman equations have been developed in
a number of prior works. [22]–[24] used nonparametric
models such as Gaussian Processes for approximate dy-
namic programming. [25] have shown that these methods
differ mainly in their use of regularization. [26] provided
a Bellman equation using kernel density-estimation and a
general overview on nonparametric dynamic programming.
In contrast to prior work, our formulation preserves the
dependency on the policy, enabling the computation of
the policy gradient in closed-form. Moreover, we upper-
bound the bias of the Nadaraya-Watson kernel regression to
prove that our value function estimate is consistent w.r.t. the
classical Bellman equation under smoothness assumptions.
We focus on the maximization of the average return in the
infinite horizon case formulated as a starting state objective∫
s µ0(s)Vπ(s) ds [19].

Definition 1. The discounted infinite-horizon objective is defined
by Jπ =

∫
µ0(s)Vπ(s) ds. Under a stochastic policy the objective

is subject to the Bellman equation constraint

Vπ(s)=

∫

A
πθ(a|s)

(
r(s,a) + γ

∫

S
Vπ(s′)p(s′|s,a) ds′

)
da,

(2)
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while in the case of a deterministic policy the constraint is given
as

Vπ(s) = r(s, πθ(s)) + γ

∫

S
Vπ(s′)p(s′|s, πθ(s)) ds′.

Maximizing the objective in Definition 1 analytically is
not possible, excluding special cases such as under linear-
quadratic assumptions [27], or finite state-action space.
Extracting an expression for the gradient of Jπ w.r.t. the
policy parameters θ is also not straightforward given the
infinite set of possibly non-convex constraints represented
in the recursion over Vπ . Nevertheless, it is possible to
transform the constraints in Definition 1 to a finite set of
linear constraints via nonparametric modeling, thus leading
to an expression of the value function with simple algebraic
manipulation [26].

3.1.1 Nonparametric Modeling.

Assume a set of n observations D ≡ {si,ai, ri, s′i, γi}ni=1

sampled from interaction with an environment, with
si,ai ∼ β(·, ·), s′i ∼ p(·|si,ai), ri ∼ R(si,ai) and γ ∼
γ(si,ai, s

′
i). We define the kernels ψ : S × S → R+,

ϕ : A × A → R+ and φ : S × S → R+, as normal-
ized, symmetric and positive definite functions with band-
widths hψ,hϕ,hφ respectively. We define ψi(s) = ψ(s, si),
ϕi(a) = ϕ(a,ai), and φi(s) = φ(s, s′i). Following [26], the
mean reward r(s,a) and the transition conditional p(s′|s,a)
are approximated by the Nadaraya-Watson regression [28],
[29] and kernel density estimation, respectively

r̂(s,a) :=

∑n
i=1 ψi(s)ϕi(a)ri∑n
i=1 ψi(s)ϕi(a)

,

p̂(s′|s,a) :=

∑n
i=1 φi(s

′)ψi(s)ϕi(a)∑n
i=1 ψi(s)ϕi(a)

,

γ̂(s,a, s′) :=

∑n
i=1 γiψi(s)ϕi(a)φi(s

′)∑n
i=1 ψi(s)ϕi(a)φi(s′)

and, therefore, by the product of p̂ and γ̂ we obtain

p̂γ(s′|s,a) := p̂(s′|s,a)γ̂(s,a, s′)

=

∑n
i=1 γiψi(s)ϕi(a)φi(s

′)∑n
i=1 ψi(s)ϕi(a)

.

Inserting the reward and transition kernels into the
Bellman Equation for the stochastic policy case we obtain
the nonparametric Bellman equation (NPBE)

V̂π(s)=

∫

A
πθ(a|s)

(
r̂(s,a)+

∫

S
V̂π(s′)p̂γ(s′|s,a) ds′

)
da

=
∑

i

∫

A

πθ(a|s)ψi(s)ϕi(a)∑
j ψj(s)ϕj(a)

da

×
(
ri + γi

∫

S
φi(s

′)V̂π(s′) ds′
)
. (3)

Equation (3) can be conveniently expressed in matrix
form by introducing the vector of responsibilities εi(s) =∫
πθ(a|s)ψi(s)ϕi(a)/

∑
j ψj(s)ϕj(a) da, which assigns each

state s a weight relative to its distance to a sample i under
the current policy.

Definition 2. The nonparametric Bellman equation on the
dataset D is formally defined as

V̂π(s)=εᵀπ(s)

(
r +

∫

S
φγ(s′)V̂π(s′) ds′

)
, (4)

with φγ(s)=[γ1φ1(s), . . . , γnφn(s)]ᵀ, r=[r1, . . . , rn]ᵀ,

επ(s)=[επ1 (s),. . . ,επn(s)]ᵀ,

επi (s)=





∫
πθ(a|s) ψi(s)ϕi(a)∑

j ψj(s)ϕj(a)
da if π is stochastic

ψi(s)ϕi(πθ(s))∑
j ψj(s)ϕj(πθ(s))

otherwise.

From Equation (4) we deduce that the value function
must be of the form εᵀπ(s)qπ , indicating that it can also be
seen as a form of Nadaraya-Watson kernel regression,

εᵀπ(s)qπ = εᵀπ(s)

(
r +

∫

S
φγ(s′)εᵀπ(s′)qπ ds′

)
. (5)

Notice that, trivially, every qπ which satisfies

qπ = r +

∫

S
φγ(s′)εᵀπ(s′)qπ ds′ (6)

also satisfies Equation (5). Theorem 1 demonstrates that the
algebraic solution of Equation (6) is the only solution of the
nonparametric Bellman Equation (4).

Theorem 1. The nonparametric Bellman equation has a unique
fixed-point solution

V̂ ∗π (s) := εᵀπ(s)Λ−1π r,

with Λπ := I − P̂γ
π and P̂γ

π :=
∫
S φγ(s′)εᵀπ(s′) ds′, where Λπ

is always invertible since P̂π,γ is a strictly sub-stochastic matrix
(Frobenius’ Theorem). The statement is valid also for n → ∞,
provided bounded R.

Proof of Theorem 1 is provided in the supplementary
material.

3.2 Nonparametric Gradient Estimation

With the closed-form solution of V̂ ∗π (s) from Theorem 1, it
is possible to compute the analytical gradient of Jπ w.r.t. the
policy parameters

∇θV̂ ∗π (s) =

(
∂

∂θ
εᵀπ(s)

)
Λ−1π r + εᵀπ(s)

∂

∂θ
Λ−1π r

=

(
∂

∂θ
εᵀπ(s)

)
Λ−1π r

︸ ︷︷ ︸
A

+ εᵀπ(s)Λ−1π

(
∂

∂θ
P̂γ
π

)
Λ−1π r

︸ ︷︷ ︸
B

. (7)

Substituting the result of Equation (7) into the return spec-
ified in Definition 1, introducing εᵀπ,0 :=

∫
µ0(s)εᵀπ(s) ds,

qπ = Λ−1π r, and µπ = Λ−ᵀ
π επ,0 we obtain

∇θĴπ =

(
∂

∂θ
εᵀπ,0

)
qπ + µᵀ

π

(
∂

∂θ
P̂γ
π

)
qπ, (8)

where qπ and µπ can be estimated via conjugate gradient
to avoid the inversion of Λπ .
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Algorithm 1 Nonparametric Off-Policy Policy Gradient

input: dataset {si,ai, ri, s′i, ti}ni=1 where ti indicates a
terminal state, a policy πθ and kernels ψ, φ, ϕ respectively
for state, action and next-state.
while not converged do

Compute εᵀπ(s) as in Definition 2 and εᵀπ,0 :=∫
µ0(s)εᵀπ(s) ds.

Estimate P̂π as defined in Theorem 1 using MC (φ(s) is
a distribution).
Set each row i of P̂π to 0 if ti is a terminal state.
Solve r = Λπqπ and επ,0 = Λᵀ

πµπ for qπ and µπ using
conjugate gradient.
Update θ using Equation (8).

end while

The terms A and B in Equation (7) correspond to the
terms in Equation (10). In contrast to semi-gradient actor-
critic methods, where the gradient bias is affected by both
the critic bias and the semi-gradient approximation [8], [12],
our estimate is the full gradient and the only source of bias
is introduced by the estimation of V̂π , which we analyze in
Section 3.3. The term µπ can be interpreted as the support
of the state-distribution as it satisfies µᵀ

π = εᵀπ,0 + µᵀ
πP̂γ

π . In
Section 5, more specifically in Figure 6, we empirically show
that εᵀπ(s)µπ provides an estimate of the state distribution
over the whole state-space. Implementation-wise, the quan-
tities εᵀπ,0 and P̂π

i,j are estimated via Monte-Carlo sampling,
which is unbiased but computationally demanding, or using
other techniques such as unscented transform or numerical
quadrature. The matrix P̂γ

π is of dimension n × n, which
can be memory-demanding. In practice, we notice that the
matrix is often sparse. By taking advantage of conjugate
gradient and sparsification we are able to achieve computa-
tional complexity of O(n2) per policy update and memory
complexity of O(n). A schematic of our implementation is
summarized in Algorithm 1.

3.3 A theoretical Analysis

Nonparametric estimates of the transition dynamics and
reward enjoy favorable properties for an off-policy learn-
ing setting. A well-known asymptotic behavior of the
Nadaraya-Watson kernel regression,

E
[

lim
n→∞

f̂n(x)
]
− f(x) ≈

h2n

(
1

2
f ′′(x) +

f ′(x)β′(x)

β(x)

)∫
u2K(u) du,

shows how the bias is related to the regression function
f(x), as well as to the samples’ distribution β(x) [30],
[31]. However, this asymptotic behavior is valid only for
infinitesimal bandwidth, infinite samples (h → 0, nh → ∞)
and requires the knowledge of the regression function and
of the sampling distribution.

In a recent work, we propose an upper bound of the
bias that is also valid for finite bandwidths [32]. We show
under some Lipschitz conditions that the bound of the
Nadaraya-Watson kernel regression bias does not depend
on the samples’ distribution, which is a desirable property

in off-policy scenarios. The analysis is extended to multidi-
mensional input space. For clarity of exposition, we report
the main result in its simplest formulation, and later use it
to infer the bound of the NPBE bias.

Theorem 2. Let f :Rd→R be a Lipschitz continuous function
with constant Lf . Assume a set {xi, yi}ni=1 of i.i.d. samples
from a log-Lipschitz distribution β with a Lipschitz constant Lβ .
Assume yi = f(xi) + εi, where f : Rd→R and εi is i.i.d. and
zero-mean. The bias of the Nadaraya-Watson kernel regression
with Gaussian kernels in the limit of infinite samples n → ∞ is
bounded by

∣∣∣E
[

lim
n→∞

f̂n(x)
]
− f(x)

∣∣∣ ≤

Lf
d∑
k=1

hk

(
d∏
i 6=k

χi

)(
1√
2π

+
Lβhk

2 χk
)

d∏
i=1

e
L2
βh

2
i

2

(
1− erf

(
hiLβ√

2

)) ,

where

χi = e
L2
βh2
i

2

(
1 + erf

(
hiLβ√

2

))
,

h > 0 ∈ Rd is the vector of bandwidths and erf is the error
function.

Building on Theorem 2 we show that the solution of the
NPBE is consistent with the solution of the true Bellman
equation. Moreover, although the bound is not affected
directly by β(s), a smoother sample distribution β(s) plays
favorably in the bias term (a low Lβ is preferred).

Theorem 3. Consider an arbitrary MDP M with a transi-
tion density p and a stochastic reward function R(s,a) =
r(s,a) + εs,a, where r(s,a) is a Lipschitz continuous function
with LR constant and εs,a denotes zero-mean noise. Assume
|R(s,a)| ≤Rmax and a dataset Dn sampled from a log-Lipschitz
distribution β defined over the state-action space with Lipschitz
constant Lβ . Let VD be the unique solution of a nonparametric
Bellman equation with Gaussian kernels ψ,ϕ, φ with positive
bandwidths hψ,hϕ,hφ defined over the dataset limn→∞Dn.
Assume VD to be Lipschitz continuous with constant LV . The
bias of such estimator is bounded by

∣∣V (s)− V ∗(s)
∣∣ ≤ 1

1− γ

(
ABias + γLV

ds∑

k=1

hφ,k√
2π

)
, (9)

where V (s) = ED[VD(s)], ABias is the bound of the bias provided
in Theorem 2 with Lf =LR, h=[hψ,hϕ], d=ds+da and V ∗(s)
is the fixed point of the ordinary Bellman equation. 2

Theorem 3 shows that the value function provided by
Theorem 1 is consistent when the bandwidth approaches
infinitesimal vales. Moreover, it is interesting to notice that
the error can be decomposed in ABias, which is the bias
component dependent on the reward’s approximation, and
the remaining term that depends on the smoothness of the
value function and the bandwidth of φ, which can be read
as the error of the transition’s model.

2. Complete proofs of the theorems and precise definitions can be
found in the supplementary material.
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The independence from the sampling distribution sug-
gests that, under these assumptions, nonparametric estima-
tion is particularly suited for off-policy setting, as the bias is
not affected by different behavioral policies. More in detail,
the bound shows that smoother reward functions, state-
transitions and sample distributions play favorably against
the estimation bias.

Low Gradient

Ground Truth
Prediction
Samples

Fig. 2: The classic effect (known as boundary-bias) of the
Nadaraya-Watson regression predicting a constant function
in low-density regions is beneficial in our case, as it prevents
the policy from moving in those areas as the gradient gets
close to zero.

3.3.1 Blocking Effect
Very commonly, in order to prevent harmful policy opti-
mization, the policy is constrained to stay close to the data
[33], to avoid taking large steps [3], [34] or to circumvent
large variance in the estimation [35], [36]. These techniques
prevent incorrect and dangerous estimates of the gradient.
Even if we do not include any explicit constraint of this
kind, the Nadaraya-Watson kernel regression automatically
discourages policy improvements towards low-data areas.
In fact, as depicted in Figure 2, the Nadaraya-Watson ker-
nel regression, tends to predict a constant function in low
density regions. Usually, this characteristic is regarded as
an issue, as it causes the so-called boundary-bias. In our
case, this effect turns out to be beneficial, as it constrains the
policy to stay close to the samples, where the model is more
correct.

4 RELATED WORK

Off-policy policy gradient estimation can be divided in three
different techniques: semi-gradient approaches, importance
sampling correction, and model based estimation. Semi-
gradient approaches omit one term in the gradient compu-
tation, which causes an estimation bias [8]. The importance
sampling correction, although unbiased, suffers from high
variance, which makes it often unpractical [37]. Model based
approaches rely on a model’s estimation, and optimize the
policy following this model. However, the model’s error
propagates in the number of steps, adding also a significant
source of bias [16].

4.1 Semi-Gradient Approaches

The off-policy policy gradient theorem was the first pro-
posed off-policy actor-critic algorithm [9]. Since then, it

has been used by the vast majority of state-of-the-art off-
policy algorithms [2], [3], [10], [11], [34]. Nonetheless, it
is important to note that this theorem and its successors,
introduce two approximations to the original policy gra-
dient theorem [19]. First, semi-gradient approaches con-
sider a modified discounted infinite-horizon return objective
Ĵπ =

∫
ρβ(s)Vπ(s) ds, where ρβ(s) is state distribution un-

der the behavioral policy πβ . Second, the gradient estimate
is modified to be

∇θĴπ = ∇θ
∫

S
ρβ(s)Vπ(s) ds

= ∇θ
∫

S
ρβ(s)

∫

A
πθ(a|s)Qπ(s,a) da ds

=

∫

S

ρβ(s)

∫

A

∇θπθ(a|s)Qπ(s,a)︸ ︷︷ ︸
A

+ πθ(a|s)∇θQπ(s,a)︸ ︷︷ ︸
B

da ds (10)

≈
∫

S

ρβ(s)

∫

A

∇θπθ(a|s)Qπ(s,a) da ds,

where the term B related to the derivative of Qπ is ignored.
The authors provide a proof that this biased gradient, or
semi-gradient, still converges to the optimal policy in a
tabular setting [8], [9]. However, further approximation
(e.g., given by the critic and by finite sample size), might
disallow the convergence to a satisfactory solution. It might
be deceiving to think that these algorithms are in fact off-
policy: although they work correctly sampling from the
replay memory (which discards the oldest samples), they
have shown to fail with samples generated via a completely
different process [8]. For this reason, we don’t consider
semi-gradient approaches to be promising for off-policy
optimization.

4.2 Importance Sampling Approaches
One way to obtain an unbiased estimate of the policy
gradient in an off-policy scenario is to re-weight every
trajectory via importance sampling [13]–[15]. An example of
the gradient estimation via G(PO)MDP [38] with importance
sampling is given by

∇θJπ = E



T−1∑

t=0

ρt



t−1∏

j=0

γj


 rt

t∑

i=0

∇θ log πθ(ai|si)

 , (11)

where ρt =
∏t
z=0 πθ(az|sz)/πβ(az|sz). This technique ap-

plies only to stochastic policies and requires the knowl-
edge of the behavioral policy πβ . Moreover, Equation (11)
shows that path-wise importance sampling (PWIS) needs
a trajectory-based dataset, since it needs to keep track of
the past in the correction term ρt, hence introducing more
restrictions on its applicability. Additionally, importance
sampling suffers from high variance [37]. Recent works have
helped to make PWIS more reliable. For example, [8], build-
ing on the emphatic weighting framework [39], proposed
a trade-off between PWIS and semi-gradient approaches.
Another possibility consists in restricting the gradient im-
provement to a safe-region, where the importance sam-
pling does not suffer from too high variance [35]. Another
interesting line of research is to estimate the importance
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Fig. 3: Benchmarking tasks.

sampling correction on a state-distribution level instead
of on the classic trajectory level [40]–[42]. We note that,
all these promising algorithms have been applied on low-
dimensional problems, as importance sampling suffers from
the curse of dimensionality. Our proposed solution suffers
also from this problem, but we believe that our approach,
as well as these recent advances in importance sampling
correction, might serve for further well-theoretically-defined
off-policy techniques.

4.3 Model Based

Another natural approach which comes to mind when
thinking about off-policy optimization, is to use a learned
model of the transition. This model allows to generate new
samples and therefore to optimize the policy potentially off-
line. The proclaimed efficiency of model-based techniques
relies on the fact that they allow off-policy optimization.
However, model-based techniques are also problematic:
the model error propagates in the Bellman recursion (or
in the number of steps, if we prefer), often resulting in
bad policy improvements. PILCO [16] aims to optimize
the policy using probabilistic inference based on Gaussian
Processes to model the estimation’s uncertainty. However, it
works on a finite horizon setting, is restricted to unimodal
state-transitions, and a particular shape of reward. PETS
[36], an improved version of PILCO, builds a probabilitstic
model using a bootstrapped ensemble of neural-networks,
and propagates the state-distribution using particles. This
method, still requires a finite horizon. Furthermore, PETS
does not make use of a parametrized policy, but instead a
model predictive control. The controller requires multiple
neural network evaluations, which can result in an issue
when interacting with a real-time system. Our method,
in contrast, works on the infinite-horizon setting, and the
usage of a parametrized policy is more suitable for real-time
operations.

5 EMPIRICAL EVALUATION

In this section, we analyze our method. Therefore, we divide
our experiments in two logical sections: the analysis of the
gradient, and the analysis of the policy optimization using
a gradient ascent technique. The analysis of the gradient
comprises an empirical evaluation of the bias, the variance
and the gradient direction w.r.t. the ground truth, in relation
to some quantities such as the size of the dataset or its de-
gree of “off-policiness”. In the policy optimization analysis,

instead, we aim to both compare the sample efficiency of
our method in comparison to state-of-the-art policy gradient
algorithms, and to study its applicability to unstructured
and human-demonstrated datasets.

5.1 Benchmarking Tasks
In the following, we give a brief description of the tasks
involved in the empirical analysis.

5.1.1 Linear Quadratic Gaussian Controller
A very classical control problem consists of linear dynamics,
quadratic reward and Gaussian noise. The main advantage
of this control problem relies in the fact that it is fully
solvable in closed-form, using the Riccati equations, which
makes it appropriate for verifying the correctness of our al-
gorithm. In our specific scenario, we have a policy encoded
with two parameters for illustration purposes. The LQG is
defined as

max
θ

∞∑

t=0

γtrt

s.t. st+1 = Ast +Bat; rt = −sᵀtQst − aᵀ
tRat

at+1 = Θst + Σεt; εt ∼ N (0, I),

with A, B, Q, R, Σ diagonal matrix and Θ = diag(θ) where
θ are considered the policy’s parameters. In the stochastic
policy experiments, πθ(a|s) = N (a|Θs; Σ), while for the
deterministic case Σ = 0 and πθ(s) = Θs. For further
details, please refer to the supplementary material.

5.1.2 OpenAI Pendulum-v0
The OpenAI Pendulum-v0 [43] is a popular benchmark in
reinforcement learning. It simulates a simple under-actuated
inverted-pendulum. The goal is to swing the pendulum
until it reaches the top position, and then to keep it stable.
The state of the system is fully described by the angle of the
pendulum ω and its angular velocity ω̇. The applied torque
τ ∈ [−2, 2] corresponds to the agent’s action. One of the
advantages of such a system, is that its well-known value
function is two-dimensional.

5.1.3 Quanser Cart-pole
The cart-pole is another classical task in reinforcement learn-
ing. It consists of an actuated cart moving on a track, to
which a pole is attached. The goal is to actuate the cart in a
way to balance the pole in the top position. Differently from
the inverted pendulum, the system has a further degree of
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complexity, and the state space requires the position on the
track x, the velocity of the cart ẋ, the angle of the pendulum
ω and its angular velocity ω̇.

5.1.4 OpenAI Mountain-Car
The mountain-car (also known as car-on-hill), consists on
an under-powered car that must reach the top of a hill. The
car is placed in the valley connecting two hills. In order to
reach the goal position, it must first go in opposite direction
in order to gain momentum. Its state is described by the
x-position of the car, and by its velocity ẋ. The episodes
terminate when the car reaches the goal. In contrast to
the swing-up pendulum, which is hardly controllable by a
human-being, this car system is ideal to provide human-
demonstrated data.

5.2 Algorithms Used for Comparisons
In order to provide an analysis of the gradient, we compare
our algorithm against G(PO)MDP with importance sam-
pling, and with off-line DPG. Instead of using the naı̈ve form
of G(PO)MDP with importance sampling, which suffers
from high variance, we used the normalized importance
sampling [44], [45] (which introduces some bias but dras-
tically reduces the variance), and the generalized baselines
[46] (which also introduce some bias, as they are estimated
from the same dataset). The off-line version of DPG, suffers
from three different sources of bias: the semi-gradient, the
critic approximation and the improper use of the discounted
state distribution [47], [48]. In order to mitigate these issues
and focus more on the semi-gradient contribution to the
bias, we provide an oracle Q-function (we denote this ver-
sion as DPG+Q). For the policy improvement, instead, we
compare to more sophisticated and recent deep reinforce-
ment learning techniques, such as TD3 [12] and SAC [2]. A
full list of the algorithms used in the comparisons with a
brief description is available in Table 1.

5.3 Analysis of the Gradient
We want to compare the bias and variance of our gradient
estimator w.r.t. the already discussed classical estimators.
Therefore, we use the LQG setting described in Section 5.1.1,

s0 ′s0

Fig. 4: Evaluated in the initial state, the optimization policy
having parameters θ1, θ2 and the behavioral policy having
parameters θ′1, θ

′
2 exhibit a fair distance in probability space.

Acronym Description Typology
NOPG-D Our method with deterministic

policy. NOPG

NOPG-S Our method with stochastic policy.
G(PO)MDP+N G(PO)MDP with normalized

importance sampling. PWIS

G(PO)MDP+BN G(PO)MDP with normalized
importance sampling and
generalized baselines.

DPG+Q Offline version of the deterministic
policy gradient theorem with an
oracle for the Q-function.

SG

DDPG-Off Offline version of the deep
deterministic policy gradient
theorem.

DDPG-On Classic version of DDPG.
TD3 Improved version of DDPG.
SAC Classic version of SAC.

TABLE 1: Acronyms used in the paper to refer to practical
implementation of the algorithms.

which allows us to compute the true gradient. Our goal
is to estimate the gradient w.r.t. the policy πθ diagonal
parameters θ1, θ2, while sampling from a policy which is
a linear combination of Θ and Θ′. The hyper-parameter α
determines the mixing between the two parameters. When
α = 1 the behavioral policy will have parameters Θ′, while
when α = 0 the dataset will be sampled using Θ. In Figure 4,
we can visualize the difference of the two policies with
parameters Θ and Θ′. Although not completely disjoint,
they are fairly far in the probability space, especially if we
take into account that such distance propagates in the length
of the trajectories.

5.3.1 Sample Analysis
We want to study how the bias, the variance and the
direction of the estimated gradient vary w.r.t. the dataset’s
size. We are particularly interested in the off-policy strategy
for sampling, and in this set of experiments we will use
constant α = 0.5. Figure 5a depicts these quantities w.r.t. the
number of collected samples. As expected, a general trend
for all algorithms is that with a higher number of samples
we are able to reduce the variance. The importance sampling
based G(PO)MDP algorithms eventually obtain a low bias
as well. Remarkably, NOPG has significantly both lower
bias and variance, and its gradient direction is also more
accurate w.r.t. the G(PO)MDP algorithms (note the different
scales of the y-axis). Between DPG+Q and NOPG there is
no sensible difference, but we should take into account the
already-mentioned advantage of DPG+Q to have access to
the true Q-function.

5.3.2 Off-Policy Analysis
We want to estimate the bias and the variance w.r.t. different
degrees of “off-policiness” α. We want to highlight that in
the deterministic experiment the behavioral policy remains
stochastic. This is needed to ensure the stochastic generation
of datasets, which is essential to estimate the bias and
the variance of the estimator. As depicted in Figure 5, the
variance in importance sampling based techniques tends
to increase when the dataset is off-policy. On the contrary,
NOPG seems to be more subject to an increase of bias. This
trend is also noticeable in DPG+Q, where the component of
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Ĵ
π
−
∇
J
π
)

Mean Gradient Estimate

Correct Direction

±π/2

0.0 0.2 0.4 0.6 0.8 1.0

α

−2

0

2

Off-Policy Analysis (b)

Fig. 5: Bias, variance, MSE and gradient direction analysis. The MSE plots are equipped with a 95% interval using
bootstrapping techniques. The direction analysis plots describe the distribution of angle between the estimates and the
ground truth gradient. NOPG exhibits favorable bias, variance and gradient direction compared to PWIS and semi-gradient.
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Ṽπ300

−2 0 2

α
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Fig. 7: A lower bandwidth corresponds to higher variance,
while higher bandwidth increases the bias up to a plateau.

the bias is the one playing a major role in the mean squared
error. The gradient direction of NOPG seems however un-
biased, while DPG+Q has a slight bias but remarkably less
variance (note the different scales of the y-axis). We remark
that DPG+Q uses an oracle for the Q-function, which sup-
posedly results in lower variance and bias3. The positive
bias of DPG+Q in the on-policy case (α = 0) is caused by
the improper use of discounting. In general, NOPG shows a
decrease in bias and variance in order of magnitudes when
compared to the other algorithms.

3. Furthermore, we suspect that the particular choice of a LQG task
tends to mitigate the problems of DPG, as the fast convergence to
a stationary distribution due to the stable attractor, united with the
improper discounting, results in a coincidental correction of the state-
distribution.

5.3.3 Bandwidth Analysis
In the previous analysis, we kept the bandwidth’s pa-
rameters of our algorithm fixed, even though a dynamic
adaptation of this parameter w.r.t. the size of the dataset
might have improved the bias/variance trade-off. We are
now interested in studying how the bandwidth impacts the
gradient estimation. For this purpose, we generated datasets
of 1000 samples with α = 0.5. We set all the bandwidths
of state, action and next state, for each dimension equal
to κ. From Figure 7 we evince that a lower bandwidth
corresponds to a higher variance, while a larger bandwidth
approaches a constant bias and the variance tends to zero.
This result is in line with the theory.

5.4 Policy Improvement
In the previous section, we analyzed the statistical proper-
ties of our estimator. Conversely, in this section, we use the
NOPG estimate to fully optimize the policy. At the current
state, NOPG is a batch algorithm, meaning that it receives
as input a set of data, and it outputs an optimized policy,
without any interaction with the environment. We study the
sample efficiency of the overall algorithm. We compare it
with both other batch and online algorithms. Please notice
that online algorithms, such as DDPG-On, TD3 and SAC,
can acquire more valuable samples during the optimization
process. Therefore, in a direct comparison, batch algorithms
are in disadvantage.

5.4.1 Uniform Grid
In this experiment we analyze the performance of
NOPG under a uniformly sampled dataset, since, as the
theory suggests, this scenario should yield the least biased
estimate of NOPG. We generate datasets from a grid over
the state-action space of the pendulum environment with
different granularities. We test our algorithm by optimizing
a policy encoded with a neural-network for a fixed amount
of iterations. The policy is composed of a single hidden layer
with 50 neurons and ReLU activations. This configuration
is fixed across all the different experiments and algorithms
for the remainder of this document. The resulting policy
is evaluated on trajectories of 500 steps starting from the
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trajectories in the dataset are suboptimal, NOPG converges
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bottom position. The leftmost plot in Figure 8, depicts the
performance against different dataset sizes, showing that
NOPG is able to solve the task with 450 samples. Figure 6
is an example of the value function and state distribution
estimates of NOPG-D at the beginning and after 300 opti-
mization steps. The ability to predict the state-distribution
is particularly interesting for robotics, as it is possible to
predict in advance whether the policy will move towards
dangerous states. Note that this experiment is not applicable
to PWIS, as it does not admit non-trajectory-based data.

5.4.2 Online Setting
In contrast to the uniform grid experiment, here we collect
the datasets using trajectories from a random agent in the
pendulum and the cart-pole environments. In the pendulum

task, the trajectories are generated starting from the up-
right position and applying a policy composed of a mixture
of two Gaussians. The policies are evaluated starting from
the bottom position with an episode length of 500 steps.
The datasets used in the cart-pole experiments are collected
using a uniform policy starting from the upright position
until the end of the episode, which occurs when the absolute
value of the angle θ surpasses 3 deg. The optimization policy
is evaluated for 104 steps. The reward is rt = cos θt. Since
θ is defined as 0 in the top-right position, a return of 104

indicates an optimal policy behavior.
We analyze the sample efficiency by testing NOPG and

DDPG-Off in an offline fashion with pre-collected samples,
on a different number of trajectories. In addition, we provide
the learning curve of DDPG-On, TD3 and SAC using the
implementation in Mushroom [49]. For a fixed size of the
dataset, we optimize DDPG-Off and NOPG for a fixed
number of steps. Since DDPG-Off exhibits an unstable learn-
ing, we select the best policy obtained during the learning
process. For NOPG, instead, we select the policy from the
last optimization step. The two rightmost plots in Figure 8
highlight that our algorithm has superior sample efficiency
by more than one order of magnitude (note the log-scale on
the x-axis).

To validate the resulting policy learned in simulation,
we apply the final learned controller on a real Quanser cart-
pole, and observe a successful stabilizing behavior as can be
seen in the supplementary video.

5.4.3 Human Demonstrated Data

In robotics, learning from human demonstrations is crucial
in order to obtain better sample efficiency and to avoid dan-
gerous policies. This experiment is designed to showcase the
ability of our algorithm to deal with such demonstrations
without the need for explicit knowledge of the underlying
behavioral policy. The experiment is executed in a com-
pletely offline fashion after collecting the human dataset,
i.e., without any further interaction with the environment.
This setting is different from the classical imitation learning
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and subsequent optimization [50]. As an environment we
choose the continuous mountain car task from OpenAI. We
provide 10 demonstrations recorded by a human operator
and assigned a reward of−1 to every step. A demonstration
ends when the human operator surpasses the limit of 500
steps, or arrives at the goal position. The human operator
explicitly provides sub-optimal trajectories, as we are inter-
ested in analyzing whether NOPG is able to take advantage
of the human demonstrations to learn a better policy than
that of the human, without any further interaction with
the environment. To obtain a sample analysis, we evaluate
NOPG on randomly selected sub-sets of the trajectories from
the human demonstrations. Figure 9 shows the average
performance as a function of the number of demonstrations
as well as an example of a human-demonstrated trajectory.
Notice that both NOPG-S and NOPG-D manage to learn
a policy that surpasses the human operator’s performance
and reach the optimal policy with two demonstrated trajec-
tories.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented and analyzed an off-policy gra-
dient technique Nonparametric Off-policy Policy Gradient
(NOPG) [17]. Our estimator overcomes the main issues of
the techniques of off-policy gradient estimation. On the one
hand, in contrast to semi-gradient approaches, it delivers
a full-gradient estimate; and on the other hand, it avoids
the high variance of importance sampling, by phrasing
the problem with nonparametric techniques. The empiri-
cal analysis clearly showed a better gradient estimate in
terms of bias, variance, and direction. Our experiments also
showed that our method has high sample efficiency and
that our algorithm can be behavioral-agnostic and cope with
unstructured data.

However, our algorithm, which is built on nonparamet-
ric techniques, suffers from the curse of dimensionality. Fur-
thermore, it currently does not account for the exploration
problem, which is important to avoid local optima. As a
future work, we will study a parametric approximation of
the Bellman equation, which similarly to NOPG allows for
a full-gradient estimate, scales better with the number of
samples, and with the help of Bayesian techniques we will
tackle the problem of safe exploration.
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Journal of Statistics, Series A, pp. 359–372, 1964.

[30] J. Fan, “Design-Adaptive Nonparametric Regression,” Journal of
the American Statistical Association, vol. 87, no. 420, pp. 998–1004,
1992.

[31] L. Wasserman, All of Nonparametric Statistics. Springer, 2006.
[Online]. Available: https://books.google.it/books?hl=it&lr=
&id=MRFlzQfRg7UC&oi=fnd&pg=PA2&dq=wasserman+2006+
all&ots=SPSQp53XJz&sig=R9JPan0NnS8GkezXCj85U2ndFmc#v=
onepage&q=wasserman%202006%20all&f=false

[32] S. Tosatto, R. Akrour, and J. Peters, “An Upper Bound of the Bias
of Nadaraya-Watson Kernel Regression under Lipschitz Assump-
tions,” arXiv preprint arXiv:2001.10972, 2020.

[33] J. Peters, K. Mulling, and Y. Altun, “Relative Entropy Policy
Search,” in Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[35] A. M. Metelli, M. Papini, F. Faccio, and M. Restelli, “Policy
Optimization via Importance Sampling,” in Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2018,
pp. 5442–5454. [Online]. Available: http://papers.nips.cc/paper/
7789-policy-optimization-via-importance-sampling.pdf

[36] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep Re-
inforcement Learning in a Handful of Trials using Probabilistic
Dynamics Models,” in Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2018, pp. 4754–4765.

[37] A. B. Owen, Monte Carlo Theory, Methods and Examples, 2013.
[38] J. Baxter and P. L. Bartlett, “Infinite-Horizon Policy-Gradient Esti-

mation,” Journal of Artificial Intelligence Research, vol. 15, pp. 319–
350, 2001.

[39] R. S. Sutton, A. R. Mahmood, and M. White, “An Emphatic Ap-
proach to the Problem of Off-Policy Temporal-Difference Learn-
ing,” The Journal of Machine Learning Research, vol. 17, no. 1, pp.
2603–2631, 2016, publisher: JMLR. org.

[40] Q. Liu, L. Li, Z. Tang, and D. Zhou, “Breaking the Curse of
Horizon: Infinite-Horizon Off-Policy Estimation,” in Advances in
Neural Information Processing Systems, 2018, pp. 5356–5366.

[41] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill, “Off-
Policy Policy Gradient with State Distribution Correction,”
arXiv:1904.08473, 2019, arXiv: 1904.08473. [Online]. Available:
http://arxiv.org/abs/1904.08473

[42] O. Nachum, B. Dai, I. Kostrikov, Y. Chow, L. Li, and D. Schuur-
mans, “AlgaeDICE: Policy Gradient from Arbitrary Experience,”
arXiv:1912.02074v1, 2019.

[43] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540, 2016,
arXiv: 1606.01540. [Online]. Available: http://arxiv.org/abs/1606.
01540

[44] C. R. Shelton, “Policy Improvement for POMDPs Using Normal-
ized Importance Sampling,” arXiv preprint arXiv:1301.2310, 2013.

[45] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method. John Wiley & Sons, 2016, vol. 10.

[46] T. Jie and P. Abbeel, “On a Connection Between Importance
Sampling and the Likelihood Ratio Policy Gradient,” in Advances
in Neural Information Processing Systems, 2010, pp. 1000–1008.

[47] P. Thomas, “Bias in Natural Actor-Critic Algorithms,” in Interna-
tional Conference on Machine Learning, 2014, pp. 441–448.

[48] C. Nota and P. S. Thomas, “Is the Policy Gradient a Gradient?” in
Proceedings of the 19th International Conference on Autonomous Agents
and Multiagent Systems, 2020.

[49] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters,
MushroomRL: Simplifying Reinforcement Learning Research, 2020,
publication Title: arXiv preprint arXiv:2001.01102. [Online].
Available: https://github.com/MushroomRL/mushroom-rl

[50] J. Kober and J. R. Peters, “Policy Search for Motor Primitives in
Robotics,” in Advances in Neural Information Processing Systems,
2009, pp. 849–856.

Samuele Tosatto received his M.Sc. degree in
Software Engineering from the Polytechnic Uni-
versity of Milan in 2017. Currently, he is pursuing
his Ph.D. at the Intelligent Autonomous Systems
Group at the Computer Science Department
of the Technical University of Darmstadt. His
research interests center around reinforcement
learning with a specific focus on its application
to robotic systems.

João Carvalho is currently a Ph.D. student at
the Intelligent Autonomous Systems group of the
Technical University of Darmstadt. Previously, he
completed a M.Sc. degree in Computer Science
from the Albert-Ludwigs-Universität Freiburg,
and studied Electrical and Computer Engineer-
ing at the Instituto Superior Técnico of the Uni-
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